[image: image4.png]

August 2001 Issue: 21
Journal of Conceptual Modeling
www.inconcept.com/jcm
Achieving Workflow Flexibility through Taming the Chaos
by Dr. Maxim Khomyakov and Ilia Bider
Abstract
Traditionally, flexibility in workflow is introduced by moving from the rigid predefined control flow to permitting alternative patterns. The paper propose a reverse approach to achieving flexibility, namely to start with chaos and then impose restrictions. This approach employs an untraditional view on business process which is regarded not as a "flow of work", but as a trajectory in the space of all possible states. The execution control in the proposed approach is realized via the notion of valid state, were a state includes activities currently planned for the given process. The flexibility is achieved by breaking the rules of planning into three categories: obligations, prohibitions, and recommendations.

Introduction
Workflow management systems (WFMS) are now coming to the forefront of business application development. However, the field of workflow still have a number of unsolved problems, see for example (Trammel, 1996). One of the main problems with current WMFS is their lack of flexibility, i.e. means of handling business processes that deviate from the standard pattern.

To illustrate the flexibility problem, consider an example from (Kim&Pike, 1998) that discusses the issues of using WFMS for supporting the hiring (recruiting) process. In this example, the process of hiring is designed in the way that background checking and medical screening is done after actual hiring. The question is what happens if "for some applicants, a hiring manager would perform at first the background checking and medical before the decision" (on hiring). The paper's answer runs as "based on the current workflow management systems, the hiring process has to be redesigned."

Obviously, redesigning the process is not a proper way to handle deviations that can be numerous. By making an "experiment of thought", we can easily create a long list of deviations for the hiring process. For example, what happens if directly after the interview with the department manager, he/she (the manager) is replaced? Would the new manager accept the opinion of the previous one, or would he/she prefer to form his/her own opinion?

The above case can not be considered as an example of wrong definition of the business process. The problem is much deeper than that. When a modeling technique is focused on defining the order of activities, it is only natural that the process description would reflect the standard way of doing things. Considering all possible ways the business process can develop is not practical. Besides, the number of ways may be too great to consider each of them separately. In a business process like in the example above, almost any thinkable sequence of activities can occur.

The problem of flexibility is widely discussed in research papers. Several approaches to combining the predefined flow of activities with ad-hoc planning were proposed to solve this problem, see for example, (Aalst, 1999, Blumenthal&Natt, 1995, Bogia&Kaplan, 1995). The most commonly used way of introducing flexibility is by moving from the rigid predefined control flow to allowing deviations. This, for example, can be done via introducing alternative patterns of behavior, by permitting the process to deviate on particular paths, etc.

In the current paper, we try to introduce flexibility starting from the opposite end. We begin with full chaos, and then introduce some means to restrict it. To be able to do that, we use an untraditional view on business process. Traditionally, a business process is viewed as a flow of activities, i.e. "work flow." We view it as a trajectory in the space of all possible states, i.e. "state flow".

The rest of the paper is structured in the following way. In section 2, we introduce a state-oriented view on business process. In section 3, we introduce a way of imposing restrictions on the set of all possible trajectories. This is done via the notion of valid state, were the state includes activities currently planned for the given process. Section 4 explains how we propose to deal with unsolicited events. Finally, section 5 clarifies the relationships between the proposed model and other approaches, and outlines the directions for future research. The approach is discussed on the conceptual level to make the paper understandable for the people outside the academic world. The readers interested in the underlying formal logic are referred to the formal paper (Bider et al., 2000).

State Flow View on Business Processes
A WFMS is a software system that supports business processes (Workflow, 1999a). The most general definition of business process, see for example (Hammer&Champy, 1994), defines it as a set of partially ordered activities aimed at reaching a well-defined goal. Some examples of goals are as follows:

· Reaching an agreement in business negotiations.

· Discharging the patient from the hospital in a (relatively) healthy state.

· Closing a sale.

The goal is a core notion of the business process definition. Having a goal presumes that at any moment of a process's lifetime, we can tell whether the process's goal is achieved or not. If it is not achieved, it is desirable to know how far we are from the goal. This leads us to the concept of process's state. The state can be final, i.e. the goal has been reached, or intermediate, i.e. the goal has not been reached yet. As an example, various states of a "house building" process are illustrated on figure 1.

Figure 1 States in a house building process.
To be able to analyze the process's state, we need to have some way of representing it on a piece of paper, in the computer, etc. This leads us to the notion of state representation. For example, for the house building process from Figure 1, a state may be represented as a snapshot of the house under construction and everything around it. Where it does not cause confusion, it is possible to refer to state representation as to state. This is especially applicable to the processes that do not deal with manufacturing physical objects, e.g., a sale process aimed at closing a sale. For this kind of processes, the state is always an abstract construct that is difficult to differentiate from the state representation.

The notion of state allows us to consider a business process as a dynamical system that moves in the space of all possible states until it reaches the final state (the goal). Movement forward (to the goal) is done via activities execution, e.g. build a wall. However, activities are not the only possible source of movement. An unpredictable external event can move the process backward in the state space, e.g., the wall has been destroyed (by an earthquake). The behavior of a business process resembles the behavior of a hybrid dynamical system for which a gradual movement in one direction can be interpolated with jumps that can move the system in the opposite directions (Schaft, 2000).

The presence of the external influence makes it impossible to define the process's goal just as a point in the space of all possible states. The goal should rather be defined as a set of final states with a criterion of which final states are reachable, and which ones can be considered as nearest to the given intermediate state. If the unpredicted external event moves the process backwards or sidewards, the initially projected final state might become unreachable, but another one can become reachable instead. (Compare, for example, the first and the last slides in fig. 1.)

Taming the chaos
The concept of state has been introduced in the mathematical system theory (Calman et al., 1969) in order to reduce the need of considering the history of inputs when calculating the outputs. The input changes the state, and the output is fully determined by the new state.

The same principle can be applied to business processes. The current state of a process normally contains enough information to determine what activities need to be executed to move the process forward. Consider, for example, the state of order processing in a retail store on fig. 2. The set of final states for this process can be defined as follows:

· For each ordered item Ordered = Delivered

· To pay = Total + Freight + Tax

· Invoiced = To pay

· Paid = Invoiced

[image: image1.png]&

N

Deal category: travel

S0331651

b1
Deal #

SRS
tooooz

USTOMER

Company Reference:Ive Jobimanager
Name: Travelshap Firstnane: Tvar
T2l 308__-5809090_ Lastname :petersson
Pos_articler arcicle name Grdered_oeliv T
CseosoGR suitcase Goxeo green s 5[10s00.00
T CBAUS0BL Compter bag 4030 black 20 20| eoooioo
3
H
mark Way of gel. weight
oisc, %
Totai 16800.00
Notes “Closed dealse Payment in 15 days | Freight
F2
“events- Planse VATCy/m)y 25.00 % | Tax 4200.00
Inyot ced
Pata To pay 21000.00

GO=E="

Figure 2 State representation of order processing.
The set of activities that should be executed depends on how the current state differs from the projected final one. Examples:

· If for some item Ordered > Delivered, shipment should be performed.

· If To pay > Invoiced, an invoice should be sent.

· If Invoiced > Paid, steps should be undertaken to get money from the customer.

· If, on the other hand, Invoiced < Paid, money should be returned to the customer.

Execution of an activity changes the state of the process, moving it nearer to the final state. For example, when shipping is completed, Ordered may become equal to Delivered, at least for some items. Obviously, the activities required for reaching the goal can't be executed in an arbitrary order. Some way of imposing restrictions is required.

In business practice, activities are planned first and executed later. Planning can be used as a tool of execution control. Let us create for a particular process's state a list of activities that should and are allowed to be executed in this state. Obviously, this list can't include two activities such that the presence or/and execution of one of them is based on the outcome of the other. The list constitutes an immediate plan of the current process.

As soon as an activity from the process's plan has been completed, new activities can be planned based on the new state of the process. Thus, the restriction on the order of execution can be defined through the rules of dynamic planning. To formulate these rules, we use the following method. We regard the process's plan as being an integral part of the process's state (more precisely, state representation). This allows us to define a notion of valid state in addition to the notion of final state. To be valid, the state should include all activities required and allowed for moving the process to the next stipulated state. See, for example, plan on fig. 3 that complements the process state from fig. 2 and makes it valid.

[image: image2.png]Deadiine Activity Resp counterpart

W ooos26 Tnvoicing s petersson

Figure 3 Process's plan that complements the state from fig. 2 and makes it valid.
Based on the notion of valid state, the order of execution can be defined in the form of rules that given an invalid state, correct it in a way that it becomes valid. The state is corrected by changing the plan, i.e. via adding and/or removing activities. The correction can be done by one general rule that observes the whole complex state, or with the help of many local rules, each of which watches a limited part of the state structure. The last option allows introducing the notion of sub-process, but in a declarative way.

Depending on what kinds of rules are introduced for controlling the processes, we can get full range from predefined control to almost full chaos. The latter occurs when all activities are planned manually, the rules requiring not more than "something is planned" when the process is not in a final state. If the plan is empty, the general activity plan something is added.

To get some order while allowing a certain degree of deviation, we need to structure the rules of planning in some way. We choose to structure the rules according to the idea of policies, as defined, for example, in ODP reference model (ISO/IEC, 1995), or in (Lipu&Sloman, 1997). Policies are usually divided into three groups: obligations, prohibitions, and permissions. However, when applying the concept of policies to the idea of dynamic planning, we group the policies in a slightly different way. We also divide them in three categories. The first two run as usual:

1. Obligations. Based on the current state and possibly the process's history some activities must be present in the process's plan. In case of absence, they are added. For example, suppose all the goods have been delivered, but not all money has been invoiced. Then the invoice activity should be in the plan.

2. Prohibitions. Based on the current state and possibly the process's history some activities can't be present in the process's plan. In case of presence, they are removed.

In respect to execution control, the concept of permission does not make much sense. Everything that is not dictated by obligations and is not prevented by prohibitions is permitted. However, another type of policies could be useful here, i.e.:

3. Recommendations. Based on the current state and possibly the process's history some activities are normally present in the process's plan. In case of absence, they are suggested (strongly or weekly) for inclusion.

Classification of rules into three groups above implies the two steps scheme of planning after executing an activity. First, the state is corrected automatically using all rules, the suggested activities being marked in a special way. Then, the responsible person may change the resulting plan, but without breaking any obligations or prohibitions. Of course, this person should have access rights that allow him to change the plan. Here, we have a typical example of permission.

The groups of rules described above give a hint on how gradual tuning of a process support system can be done. We can start with no rules, totally relying on manual planning. On the next stage, when the nature of the process is better understood, recommendations are added. As the last step, some recommendations are promoted to obligations and some prohibitions are added. It is very important to have a strategy of gradual tuning, as it is practically impossible to acquire all information on business processes before the system has been installed.

Note that rules of planning can be modified when some of the processes that were started earlier are still running. It is up to the new rules to fix the plans of those processes so that they follow the new pattern of behavior. The incompatibility problem may arise if the new rules are based on another definition of the process's state than the one used earlier. In this case, new rules can not be applied to the already running processes without solving the conversion problems, which might be a tricky task.

Dealing with Unsolicited Events
As was pointed in section 2, the trajectory of a business process in the state space is affected not only by activities aimed at reaching the goal, but also by unpredictable external events. As soon as such event is detected, the state representation of the process should be corrected.

Consider an example of order processing being in the state defined by fig. 2 and fig. 3. Suppose customer Travelshop rings and informs the store that the situation in his market place has changed, and he won't be able to sell all 20 computer bags. He then asks permission to reduce his order from 20 to 10 bags. Granted the permission has been obtained, the number of bags ordered should be changed from 20 to 10. As all 20 bags have already been delivered, activities aimed at getting the excessive bags back should be completed. These activities can be added to the plan by standard rules of dynamic planning based on the process state emerged after correction.

The need to correct the state can arise not only due to an external event, but also due to human errors in executing and registering activities. The conditions of business process management are very similar to those of navigating the ship in the sea without modern systems of position recognition. The ship's position on the map in this case is approximated via calculations based on the current course, speed of the ship, tides, wind, etc. Correction in the position is made from time to time when the meteorological conditions allow it.

Consider one more experiment of thought. Let 9 black suitcases where sent to Travelshop instead of 9 green ones as is indicated in fig. 2, which can be attributed to a human mistake. The mismatch can be discovered when Travelshop makes a complaint, or when a responsible worker from the store checks whether all deliveries reached their destination. As soon as a mismatch has been detected, the state representation should be corrected. The first item in Fig. 2 gets the Delivered quantity set to zero. A new item is added to the list that corresponds to the green suitcase with the Ordered quantity set to 0, and the Delivered quantity set to nine. The corrected state will require new activities added to the plan, like delivering the right goods, and getting back the wrong ones.

Let us continue the experiment, and suppose that the customer is willing to accept the black suitcases instead of the green ones but at a lower price. Then the state representation should be corrected as shown in fig. 4. In this case, the plan in fig. 3 will remain consistent with the state of the affairs.

[image: image3.png]S0331651 Tbis:rms
Deal category: travel Deal # t0000Z
USTOMER
Company Reference:Ive Jobimanager
Travelshop Firstname: Tvar
— yos_-ssos0s0_ Lastname :petersson
Pos_articler arcicle name Grdered_oeliv T
CseosoGR suitcase Goxeo green o o
2 CBA4030BL Computer bag 40x30 black 20 20| soo0.00
3 CS0BL Siftcase eows0 black s 5| Sre0io0
H
mark Way of gel. weight
oisc, %
Totai 15720.00
Notes “Closed deals- Payment in 15 days | Freight
F2
“events« “Planse VATCy/m)y 25.00 % | Tax 3930.00
Inyot ced
pata To pay 13650.00

e

Figure 4 Corrected state of the order processing.
Concluding Remarks
When formulating our approach, we use many notions and concepts that are present in many other research works on workflow, and the workflow standards (Workflow, 1995, 1999a,b). Many features of our model can be found in other papers, in some commercial or experimental WFMS, or are in the air. Detailed comparison of our approach with those of others is beyond the frame of this paper (an exception has been made for the field of hybrid dynamical systems which is considered below). Generally speaking, the essence of our approach is not the features themselves, rather the way we are trying to obtain them from one consistent view on business process. This view considers only one flow in the process, the flow of states. The flow of activities is derived from the process's plan that is an integral part of the process's state. Each activity finds information needed for its execution directly in the relevant parts of the state, thus no explicit information flow is defined. Our view presents also an attempt of a declarative description of the business process dynamics.

Conceptually, our approach to describing processes is similar to the idea of hybrid automata (see, for example (Schaft, 2000). In the theory of hybrid automata, the state of the system consists of two different constituents: a set of values assigned to the state variables, and a location to which one or more activities are assigned. Each activity is specified as a set of differential equations showing how the state variables are being changed in time. The main difference of this presentation from ours (on the conceptual level, of course) is as follows. In the theory of hybrid automata, the number of locations is finite. In our approach, we add activities directly to the state, and thus we do not have an explicit notion of location. Potentially the number of "locations" in our approach may be infinite.

Historically, the proposed view on the business processes is derived from our general framework for modeling discrete dynamic systems. We call it CHAOS, where the acronym stands for Concurrent Human-Assisted Object Systems. In this framework, which is presented in (Bider et al., 2000, Bider&Khomyakov 2001), we view the system as consisting of:

· a set of objects,

· a code of laws,

· a set of connectors, each connector hanging on a group of objects that must obey a certain law.

Both, rules of dynamic planning, and activities represent special types of laws. A planning engine(s), and planned activities (activities included in the process's plan) are connectors that ensure that those laws hold.

The current paper summarizes also the results of our practical work on business process analysis, and building systems to support business processes. The results of our practical work are presented in (Bider, 1997a,b), and shortly reviewed in (Bider&Khomyakov, 1998a,b)

The paper is focused on the issues related to flexible execution control of business processes. Other issues, like resource distribution and management, are left outside. These issues are relatively independent from the execution control, and we hope that the results already achieved in these fields can be connected to our approach with minor modifications. This area is currently under investigation. Another direction in the future research is creating a formal language for rules of planning. (In our practical work, we more or less used hard coding.)

It is worthwhile to mention that the state flow view has an impact on all practical work during business analysis and system design. For example, finding the proper representation for the process's state becomes the most important issue of business analysis. An example of such analysis is presented in (Andersson et al., 2002). An advantage of using the state-oriented approach when doing analysis consists in following. The analysis of what kind of state the process can come to can be separated from the analysis of how and why it can come to this state. The analysis of various possible states can be done by making experiments of thought with a picture like the one in fig. 2. Such a picture is quite understandable for the people engaged in the business being analyzed, and their participation in the experiments is mandatory.

Acknowledgements
The work of the second author was partly supported by Stockholm foundation "TeknikBroStiftelsen".

A preliminary (short) version of this paper was published in "Proceedings of CRWIG 2000" in the section "Works in Progress" under the name:

Bider, I., and Khomyakov, M. Is it Possible to Make Workflow Management Systems Flexible? Dynamical Systems Approach to Business Processes. Proceedings of Six International Workshop on Grupware. CRIWG2000, IEEE Computer Society Press, 2000, pp. 138-141.

A full paper was presented at OOIS 2000, and published in the proceedings of this conference. The current publication is a slightly extended version of the paper presented at OOIS.

References

(Aalst, 1999): Aalst, W.M.P. van der. How to Handle Dynamic Change and Capture Management Information? An Approach Based on Generic Workflow Models. http://wwwis.win.tue.nl/~wsinwa/genwf.ps, 1999.

(Andersson et al, 2002): Andersson, T., Andersson-Ceder, A., and Bider, I. State Flow as a Way of Analyzing Business Processes - Case Studies. http://www.ibissoft.se/English/ExpReport.htm. Will appear in Logistics Information Management, Vol 14. MSB University Press, 2002.

(Bider, 1997a): Bider, I. Developing Tool Support for Process Oriented Management. Data Base Management 26-01-30, Auerbach, 1997.

(Bider, 1997b): Bider, I. Object Driver: A Method for Analysis, Design, and Implementation of Interactive Applications. Data Base Management. 32-10-25, Auerbach, 1997.

(Bider&Khomyakov, 1998a): Bider, I. and Khomyakov, M. Object-Oriented Model for Representing Software Production Processes. ECOOP'97 Workshop Reader, Springer, 1998. LNCS 1357, pp. 319-322.

(Bider&Khomyakov, 1998b): Bider, I. and Khomyakov, M. Business Process Modeling - Motivation, Requirements, Implementation. ECOOP'98 Workshop Reader, Springer, 1998. LNCS 1543, pp. 217-218.

(Bider et al., 2000): Bider, I., Khomyakov, M. and Pushchinsky, E. Logic of Change: Semantics of Object Systems with Active Relations. Automated Software Engineering. Vol.7:1, 2000, pp. 9-37.

(Bider&Khomyakov, 2001): Bider, I., Khomyakov, M. If You Wish to Change the World, Start with Yourself: An Alternative Metaphor for Objects Interaction. The Journal of Conceptual Modeling, February 2001. www.inconcept.com/JCM/February2001/bider.html
(Blumenthal&Natt, 1995): Blumenthal, R. and Nutt, G.J. Supporting Unstructured Workflow Activities in the Bramble ICN System. In the Proceedings of the 1995 ACM Conference on Organizational Computing Systems (COOCS'95), pp. 130-137, Milpitas, California, 1995.

(Bogia&Kaplan, 1995): Bogia, D.P. and Kaplan, S.M. Flexibility and Control for Dynamic Workflows in the wOrlds Environment. In the Proceedings of the 1995 ACM Conference on Organizational Computing Systems (COOCS'95), pp 148-159. Milpitas, California, 1995.

(Hammer&Champy, 1994): Hammer, M., and Champy, J. Reengineering the Corporation - A Manifesto for Business Revolution, Nicholas Brealey Publishing, London, 1994.

(ISO/IEC, 1995): ISO/IEC 10746-2. Open Distributed Processing - Reference Model - Part 2: Foundations. 1995.

(Kalman et al, 1969): Kalman R.E., Falb P.L., and Arbib, M.A. Topics in Mathematical System Theory. McGraw-Hill, 1969.

(Kim&Pike, 1998): Kim, K. and Paik, S. Practical Experience and Requirements on Workflow. In Coordination Technology for Collaborative Applications. LNCS 1364, pp. 145 -160. Springer, 1998.

(Lipu&Sloman, 1997): Lupu E., and Sloman M. A Policy Based Role Object Model. In the Proceedings of EDOC'97, pp. 36-47. Gold Cost, Australia, October 1997.

(Schaft, 2000): Schaft A. Van der, and Schumacher H. An introduction to Hybrid Dynamical Systems. Springer 2000.

(Trammel, 1996): Trammel K. Workflow without fear. Byte, April 1996.

(Workflow, 1995): Workflow Management Coalition. Reference Model - The Workflow Reference Model. WFMC-TC-1003, 19-Jan-95.

(Workflow, 1999a): Workflow Management Coalition. Terminology & Glossary. WFMC-TC-1011, Feb-1999.

(Workflow, 1999b): Workflow Management Coalition. Interface 1 - Process Definition Interchange. WfMC-TC-1016-P, Oct-1999.

