

KNOW v2

Ben Goertzel
February 26, 2003

Notes

• Section 2 is a modification of a section of an earlier document written by Pei
Wang, Cate Hartley and Charlie Derr

• The basic concept of KNOW was created by Pei Wang, although KNOW v2
contains a lot of non-Pei ideas

1. Introduction

This brief document gives an overview of the KNOW v2 (version 2) knowledge
representation language.

This language is a descendant of the KNOW v1 language developed for Webmind in
1999-2000. A small corpus of knowledge was encoded using KNOW v1 in 2000. As it
turns out, the KNOW v2 syntax is very different from KNOW v1 syntax, but, the
differences pertain to advanced features, and the vast majority of the knowledge entered
in KNOW v1 is also valid KNOW v2. From here on we will refer to KNOW v2 simply
as “KNOW”, using the version numbers only when that distinction really needs to be
made.

KNOW is intended for two use cases:

1. Formal-language conversation between humans and Novamente, in the context of
the ShapeWorld UI and other future interfaces

2. Humans entering knowledge in files, a la “expert system encoding”

Generally speaking, KNOW may be considered analogous to CycL, the knowledge
representation language used in the Cyc AI project. However, KNOW is customized for
Novamente, which means that in detail it’s quite different from CycL. Note also that
CycL is designed only for the first use case mentioned above, not the second.

Although KNOW is designed for correspondence with Novamente’s internal knowledge
representation, it does not correspond exactly to Novamente’s internal knowledge
representation. One major difference has to do with the use of variables. Novamente

does not use variables internally, but KNOW does use variables, as they are much more
intuitive to most humans that Novamente’s internal combinator representation.

2. The Grammar

The grammar is written with the following notations:

• "A := B C D" means that "A" consists of a sequence "B C D".
• "A := B C [D]" means that "A" consists of a sequence "B C" or "B C D", that is,

D is optional.
• "A := B | C" means that "A" consists of "B" or "C".
• "A := {B}+" means that "A" consists of a (non-empty) sequence of "B"s (with an

arbitrary length).
• “A = B /<n/>” means that “A” consists of B followed by “<n>” (for instance A =

B /<.5/> in the grammar means that in reality A is “B <.5>”). The /’s denote that
the < and > are to be taken literally.

Here comes the grammar:

<text> ::= {<sentence>}+

<sentence> ::=

<plainTerm> <truthValue>

| <firstOrderRelation> {<firstOrderArgument>}+ [<truthValue>] [<punctuation>]

| <logicalOperator> {<Argument>}+ [<truthValue>][<punctuation>]

 | <predicateName> {<Argument>}+ [<truthValue>][<punctuation>]

 | <schemaName> {<Argument>}+ ?

| <higherOrderRelation> {<higherOrderArgument>}+ [<truthValue>][<punctuation>]

 | Context <Argument> <higherOrderArgument> [<truthValue>][<punctuation>]

| SatisfyingSet <sentence> [<punctuation>]

 | OutputValue <schemaName> {<Argument>}+ [<punctuation>]

<punctuation> ::= . | ? | !

<truthValue> = [/< <strength> >/ | /< <strength, weight_of_evidence> >/]

<strength>: real number in [0, 1]
<weightOfEvidence>: real number in [0, 1]

<Argument> = <firstOrderArgument> | <higherOrderArgument>

<firstOrderArgument> = <term> | <variable>

<higherOrderArgument> = <sentence> | <variable>

<term> = (<plainTerm> | <pragmaticTerm> | <determinedTerm>) [<truthValue>]

<plainTerm> = string enclosed in quotes, or, string without whitespace that is
neither a pragmaticTerm nor a varName

<pragmaticTerm> = one of the terms: this, that, that1, that2, now, here, there [not
enclosed in quotes]

<determinedTerm> = <determiner> <plainTerm>

<determiner > = one of the terms: this [others may be added later, perhaps]

<predicateName> = <plainTerm> | <varName> | <determinedTerm>

<schemaName> = <plainTerm> | <varName> | <determinedTerm>

<variable> = <universalVariable> | <existentialVariable>

<universalVariable> = <plainUniversalVariable> | <determinedUniversalVariable>

<plainUniversalVariable> = string starting with _ : e.g _r, _x, etc.

<determinedUniversalVariable> = <determiner> <plainUniversalVariable>

<existentialVariable> = <existentialVariable> [<dependency>]

<existentialVariable> = string starting with !_ : e.g. !_r, _x, etc.

<dependency> ::= {<variable>}+

The scope of a variable name is assumed to be the text. That is, if a certain
variable name (say _x) occurs in the different sentences in the same text, it is
assumed to have a common meaning in all the sentences. On the other hand, if
the variable name _x occurs in different sentences in different texts, this is not

assumed; different texts have no semantic overlap except insofar as they may be
decided to overlap within Novamente after they’re loaded in. Each text is loaded
into Novamente as a whole.

Next there, is a list of specific logicalOperator, firstOrderRelation and
higherOrderRelation objects that we know are going to be useful. This list may be
expanded over time. These have different arities, and formally speaking, the
arities are parts of the formal grammar of KNOW, even though the above
grammar is not written out that way.

In the following, I am using the notation <1> to denote 1-ary, <2> to denote
binary, <n> to denote n-ary, etc.

<logicalOperator> ::= AND <n> | OR <n> | NOT <1> | XOR <n>| Ordered-AND
<n>

<firstOrderRelation> = Inheritance <2>
 | Similarity <n>
 | Member <2>
 | Subset <2>
 | ExtensionalSimilarity <n>

 |IntensionalInheritance <2>

 |IntensionalSimilarity <n>
 | SymmetricAssociation <n>

 | AsymmetricAssociation <2>

 | PartOf <2>

<higherOrderRelation> = Implication <2>
 | Equivalence <n>
 | ExtensionalImplication <2>
 | ExtensionalEquivalence <n>

 | IntensionalImplication <2>
 | IntensionalEquivalence <n>
 | Hypothetical <1>

Next, for sake of user sanity, KNOW should also support shorthand names.
Suggested shorthand names are as follows:

Full Name Shorthand
Implication Imp
Equivalence Equiv
ExtensionalImplication ExtImp
ExtensionalEquivalence ExtEquiv
IntensionalImplication IntImp
IntensionalEquivalence IntEquiv
Hypothetical Hyp
AssymetricAssociation AsymAss
SymmetricAssociation SymAss
Inheritance Inh
Similarity Sim
ExtensionalSimilarity ExtSim
IntensionalSimilarity IntSim
IntensionalInheritance IntInh
OutputValue OutVal
SatisfyingSet SatSet

Finally, there are two grouping methods that I have found useful: parentheses and
indentation. I suppose KNOW should support both.

An example KNOW sentence expressed using both forms of grouping is

Parentheses:

Imp (Inh _x cat) (likes _x fish)

Indentation:

Imp

 Inh _x cat

 likes _x fish

3. Examples, and Mappings into Novamente Structures

In this section I will run through the various parts of the above-given grammar,
giving examples of each part. I will illustrate the mapping of KNOW expressions
into Novamente structures in the context of these examples.

The most natural way to review the grammar is to go through the sentence types
one by one.

<firstOrderRelation> {<firstOrderArgument>}+ [<truthValue>]
[<punctuation>]

First, a note about punctuation. If no punctuation mark is given, the assumption
is that the sentence is declarative, i.e. that the mark “.” is implicitly intended.

Examples here would be

Inheritance cat animal

Similarity Ben Cassio Thiago Senna <.8>

Similarity Ben Cassio Izabela <.8, .9>

Member Ben “Novamente Team”

Shorthand examples are:

Inh cat animal

IntSim Ben Ken <.5> ?

A more interesting example is

Inheritance this red !

(This contains the ! for emphasis, and it also contains “this”, which is a
pragmaticTerm.)

Some question examples are:

Inheritance this blue?

Subset square circle?

The mapping of declarative (.) first-order relations into Novamente is obvious and
simple.

In the case of binary arguments, the sentence becomes a single Novamente link.
The arguments of the sentence are the source and target of the link. These
arguments are ConceptNodes, and WordNodes or PhraseNodes are used for the
strings used to label the concepts. If these WordNodes and PhraseNodes already
exist, they are simply used; otherwise new ones are created. On the other hand,
the question of whether new ConceptNodes are created is a subtle one.

Consider the case where the relevant Word/PhraseNode already exists, and there
is an existing ConceptNode. Say there is an existing ConceptNode for “square”,
and the user has entered a KNOW text regarding “square.” Do we want to simply
assume that the user’s text refers to the existing ConceptNode for “square”? Not
necessarily. What if there is more than one ConceptNode linking to the
WordNode for “square” – which one should be chosen?

For starters we can use a simple and temporary heuristic:

• If the relevant Word/PhraseNode already exists, we take the ConceptNode
with the highest-strength AsymmetricAssociativeLink to it, and assume it
is the right one.

• If there are no ConceptNodes linked to that Word/PhraseNode with
AsymmetricAssociativeLinks, we simply create a new ConceptNode

This heuristic is totally inadequate because it does not support ambiguity. It will
have to be replaced fairly quickly with a schema embodying a more sophisticated
heuristic for sense disambiguation. In this more general approach, the system
will have to create a new ConceptNode for each term in the KNOW text, and then
there will be MindAgents and/or schemata that figure out how whether this new
ConceptNode should be fused with an existing one or not.

So, for instance,

Inheritance cat animal

is mapped into (using Sasha notation)

ConceptNode: C_cat, C_animal

WordNode: W_cat#cat, W_animal#animal

InheritanceLink C_cat C_animal

AsymmetricAssociativeLink W_animal C_animal

AsymmetricAssociativeLink W_cat C_cat

On the other hand, the determiner this exists in KNOW syntax to allow the user to
specify that he intends a particular entity rather than a general category.

So, for example,

Subset (this square) (this circle) ?

asks whether some particular square being referred to is a subset of some
particular circle being referred to, whereas

Subset square circle ?

asks whether the general concept “square” is a subset of the general concept
“circle.” In the former case, the correct mapping into Novamente structures
involves creating a new ConceptNode for (this square) and a new ConceptNode
for (this circle). So one has a mapping like

SubsetLink

 ConceptNode: square_1

 ConceptNode: circle_1

InheritanceLink

 square_1

 ConceptNode: square

InheritanceLink

 circle_1
 ConceptNode: circle

It is up to Novamente cognition to figure out how the node we’ve called square_1
relates to previous instances of squares that the system has been told about.

We’ve been talking about declarations. But an exclamatory first-order relational
sentence is entered into the system basically the same way, the only difference
being that the system is supposed to note that the user has emphasized the
sentence. So, for instance, if the system is sold

Inh cat animal !

we may have

EvaluationLink

Emphasis

 ListLink

 UserNode: U

 InheritanceLink C_cat C_animal

where Emphasis is a PredicateNode that we are singling out as the semantic
mapping of the ! mark.

An interrogative sentence such as

Inh cat animal ?

is handled only a little differently. One enters the link into the system as if it were
a declaration, and then enters also

UserNode: U

EvaluationLink

Asked

 ListLink

 U

 OutputValueLink

TruthValue

InheritanceLink C_cat C_animal

This denotes that the user asked for the answer to the question: “What is the truth
value of the link (InheritanceLink C_cat C_animal)?” Of course, it denotes this in
a very primitive way: It is up to the system to figure out how to appropriately
respond to Asked relations that are mapped into its mind via KNOW
interpretation.

So far we have given only examples of isolated firstOrderRelation sentences, but
these sentences may also occur embedded within other sentences. We’ll see
examples of that later.

 <logicalOperator> {<Argument>}+ [<truthValue>][<punctuation>]

Next, the logical operator based sentences.

These may be used with first-order terms as arguments, e.g.

AND cat ugly ?

AND square (NOT blue)

They may also be used with sentences as arguments, e.g.

Imp

 Inh _X cat

 AND (Inh _X fluffy) (eats _X mouse)

 <predicateName> {<Argument>}+ [<truthValue>][<punctuation>]

Predicate sentences are going to be very common in KNOW; for instance

above square triangle

inside circle square <.8>

We have already seen other examples of predicate sentences embedded within
other KNOW sentences.

The first above example gets internally mapped into:

EvaluationLink

 PredicateNode: above_1

 ListLink

 ConceptNode: square_1

 ConceptNode: triangle_1

AsymmetricAssociativeLink

 WordNode: #“square”

 square_1

AsymmetricAssociativeLink

 WordNode: #“triangle”

 triangle_1

AsymmetricAssociativeLink

 WordNode: #above

 above_1

 <higherOrderRelation> {<higherOrderArgument>}+ [<truthValue>][<punctuation>]

For example, the transitivity of the “inside” relationship could be taught to the
system via the higher-order KNOW sentence

Implication

 AND

 inside _x _y

 inside _y _z

 inside _x _z

An example with more complex use of variables would be “every square on the
screen now is contained in a circle

Implication

 Inheritance (this _x) square

 AND

Inheritance _y(_x) circle

 Contains y(_x) _x

In this case, the variable _y contains a dependency list, indicating that it depends
on _x [each _x may lead to a different _y]. The interaction between variable
dependency lists and the this predicate requires some subtlety. Basically, if a
variable depends on a variable that occurs with the this determiner, then it must
also be interpreted as a specific entity (a new node) upon being entered into
Novamente. Also, if a variable occurs in a text once with a this determiner, then
within that text it always must occur with a this determiner.

 Context <Argument> <higherOrderArgument> [<truthValue>][<punctuation>]

The Context sentence corresponds to ContextLink in Novamente. For instance
the KNOW utterance

Context skiing (Inh Ben incompetent)

becomes internally

ContextLink

 ConceptNode: skiing

 InheritanceLink

 UserNode: Ben

 ConceptNode: incompetent

AsymmetricAssociativeLink

 WordNode #“Ben”

 ConceptNode: Ben

AsymmetricAssociativeLink

 WordNode #“incompetent”

 ConceptNode: incompetent

AsymmetricAssociativeLink

 WordNode #“skiing”

 ConceptNode: skiing

SatisfyingSet <sentence> [<punctuation>]

SatisfyingSet is a construct used in Novamente to, essentially, do the same thing
as quantifiers without explicitly using quantifiers. Having both SatSet and
quantifiers in KNOW is redundant, but this redundancy may conceivably be
found useful.

For instance, consider the sentence “Every boy loves some girl.”

In terms of quantifiers, this is

Imp

 Inh _b boy

 AND

 Inh _g(b) girl

loves _b _g(_b)

Without quantifiers, using SatSet, it’s

Imp
 Inh _b boy
 Subset
 SatSet (loves _b)

girl

Note that (loves _b) is interpreted as a predicate, using the currying convention from
functional programming. This is what allows SatSet to work without existential variables
and dependency lists.

OutputValue <schemaName> {<Argument>}+ [<punctuation>]

This kind of sentence is only going to be used only within other sentences, or

For instance,

Sim “George W Bush” (OutputValue son_of “George H.W. Bush”)

is another way of saying

Member “George W Bush” (SatisfyingSet (ExecutionLink son_of “George H.W. Bush” _x))

The mapping into internal Novamente structures is simple; the OutputValue
relation becomes an OutputValueLink, and the schemaName becomes a
SchemaNode linked to a WordNode containing the schemaName string (with an
AsymAss link pointing from the WordNode). If there already exist
SchemaNode(s) linked to the appropriate WordNode, then we have a familiar
problem of disambiguation, which for starters can be hacked as in the other cases
mentioned above.

<schemaName> {<Argument>} ?

This is a special shorthand used for asking questions,

For instance

OutputValue + 2 3 ?

asks the system to add 2 and 3.

But we may rephrase this simply as

+ 2 3 ?

Similarly to ask what’s the neighbor of the square on the screen, we can ask

neighbor (this square) ?

<plainTerm> <truthValue>

This type of sentence is used to assign “node probabilities”, e.g

aardvark <.01>

It’s most useful in the context of Context sentences e.g.

Context zoo (aardvark <.01>)

	KNOW v2
	Sim “George W Bush” \(OutputValue son_of “George

